Selasa, 20 Maret 2012

SKEMA LAMPU KLIP-KLOP


headerphoto

Rangkaian Penyearah Setengah Gelombang



Salah satu penggunaan terpenting dioda didasarkan pada kemampuan dioda untuk menghantarkan arus hanya ke satu arah. Bila dioda dipasang pada arus bolak-balik atau arus AC (seperti yang pernah ditulis disini), maka gelombang sinus bolak-balik diubah menjadi gelombang searah atau arus DC.

Perhatikan apa yang terjadi pada rangkaian di bawah ini

dioda-penyearah
Arus listrik yang diberikan ke rangkaian adalah arus bolak-balik yang dihasilkan oleh sebuah transformator. Selama setengah siklus positif AC, dioda diberi bias maju sehingga dapat mengalirkan arus. Arus yang mengalir melewati dioda ke beban RL dan kembali menuju trafo. Kemudian pada setengah siklus negatif AC, dioda tidak menghantarkan arus listrik, karena diberi bias mundur.

Bentuk gelombang arus yang melewati beban RL di plot pada gambar dibawah ini.

penyearah-setengah-gelombang
Sebuah rangkaian yang mampu mengkonversi tegangan AC menjadi DC disebut sebagai rangkaian penyearah (rectifier). Sedangkan rangkaian penyearah seperti diatas, menghasilkan arus output dari setengah siklus positif input, kita menyebutnya sebagai rangkaian penyearah setengah gelombang.


Berikut ini Gambar skema Rangkaian Penyearah Setengah Gelombang beserta komponen dan cara pembuatannya

Rangkaian penyearah adalah rangkaian yang berfungsi untuk menjadikan gelombang yang mempunyai lebih dari satu arah menjadi gelombang satu arah. Sebagai contoh sinyal yang berbentuk sinusoidal dan mempunyai dua arah gelombang, yaitu arah dari kutub positif ke negatif dan arah dari negatif ke positif, kemudian dijadikan gelombang yang mempunyai satu arah saja dengan menggunakan rangkaian penyearah. Untuk menyearahkan gelombang biasanya digunakan dioda, Ada dua metode untuk yang digunakan yaitu metode penyearah setengah gelombang (Half-Wave Rectifier) dan penyearah gelombang penuh (Full-Wave Rectifier).




Rangkaian di atas merupakan rangkaian penyearah setengah gelombang yang menggunakan satu buah dioda. Sesuai dengan prinsip dasar dioda, idealnya dioda akan berfungsi seperti seuatas kawat pada saat diberi bias maju dan berfungsi bagaikan saklar terbuka pada saat diberi bias mundur. Maksud dari bias maju adalah apabila pada terminal anodanya (pangkal dari symbol panah) diberi catu positif kemudian terminal katodanya (ujung symbol panah) diberi catu negative. Intinya arus listrik bisa mengalir apabila searah dengan arah panah, sedangkan jika berlawanan dengan arah panah maka arus tidak bisa mengalir.
 Gambar Osiloscope Rangkaian Penyearah Setengah Gelombang
Jika kita perhatikan gambar gelombang pada osiloscope di atas, gelombang masukan adalah gelombang yang berada di bagian bawah, sedangkan gelombang keluaran adalah yang pada bagian atas. Pada saat siklus positif tegangan yana jatuh pada terminal output idealnya adalah sama dengan tegangan supply, atau tegangan supply – 0,7 V (Dioda silicon) serta tegangan supply – 0,3 V (Dioda germanium). Hal ini terjadi karena dioda diberi bias maju sehingga arus listrik akan melewati dioda bagaikan seutas kawat. Sedangkan pada saat siklus negative, tegangan output hampir sama dengan 0 volt dikarenakan dioda diberi bias mundur (bias reverse) sehingga dioda bekerja bagaikan kawat yang terputus atau saklar yang terbuka. Sesuai dengan hukum pembagi tegangan, maka tegangan yang jatuh pada terminal yang terbuka atau tahanan yang tak terhingga adalah sama dengan tegangan supply. Jika semua tegangan jatuh pada dioda maka tegangan yang jatuh pada terminal output atau beban 10 Kohm adalah 0 volt.



PENYEARAH GELOMBAN

Rangkaian penyearah gelombang merupakan rangkaian yang berfungsi untuk merubah arus bolak-balik (Alternating Current / AC) menjadi arus searah (Direct Current / DC). Komponen elektronika yang berfungsi sebagai penyearah adalah dioda, karena dioda memiliki sifat hanya memperbolehkan arus listrik melewati-nya dalam satu arah saja.
Rangkaian Penyearah Setengah Gelombang Rangkaian penyearah setengah gelombang merupakan rangkaian penyearah sederhana yang hanya dibangun menggunakan satu dioda saja, seperti diilustrasikan pada gambar berikut ini.

penyearah-setengah-gel
Prinsip kerja dari rangkaian penyearah setengah gelombang ini adalah pada saat setengah gelombang pertama (puncak) melewati dioda yang bernilai positif menyebabkan dioda dalam keadaan ‘forward bias’ sehingga arus dari setengah gelombang pertama ini bisa melewati dioda.
Pada setengah gelombang kedua (lembah) yang bernilai negatif menyebabkan dioda dalam keadaan ‘reverse bias’ sehingga arus dan setengah gelombang kedua yang bernilai negatif ini tidak bisa melewati dioda. Keadaan ini terus berlanjut dan berulang sehingga menghasilkan bentuk keluaran gelombang seperti diperlihatkan pada gambar berikut ini.
kurva-setengah-gel
Dari gambar di atas, gambar kurva ‘D1-anoda’ (biru) merupakan bentuk arus AC sebelum melewati dioda dan kurva ‘D1-katoda’ (merah) merupakan bentuk arus AC yang telah dirubah menjadi arus searah ketika melewati sebuah dioda.
Pada gambar tersebut terlihat bahwa ketika gelombang masukan bernilai positif, arus dapat melewati dioda tetapi ketika gelombang masukan bernilai negatif, arus tidak dapat melewati dioda. Karena hanya setengah gelombang saja yang bisa di searah-kan, itu sebabnya mengapa disebut sebagai Penyearah Setengah Gelombang.
Rangkaian penyearah setengah gelombang ini memiliki kelemahan pada kualitas arus DC yang dihasilkan. Arus DC rata-rata yang dihasilkan dari rangkaian ini hanya 0,318 dari arus maksimum-nya, jika dituliskan dalam persamaan matematika adalah sebagai berikut;

IAV = 0,318 ∙ IMAX

Oleh sebab itu rangkaian penyearah setengah gelombang lebih sering digunakan sebagai rangkaian yang berfungsi untuk menurunkan daya pada suatu rangkaian elektronika sederhana dan digunakan juga sebagai demodulator pada radio penerima AM.

Rangkaian Penyearah Gelombang Penuh

Ada beberapa jenis rangkaian penyearah gelombang penuh dimana rangkaian penyearah ini dapat menyearahkan satu gelombang penuh (puncak dan lembah). Dua rangkaian penyearah gelombang penuh yang sering digunakan dalam dunia elektronika adalah penyearah gelombang penuh menggunakan rangkaian dioda jembatan dan yang kedua adalah penyearah gelombang penuh menggunakan ‘center tap design’.
Rangkaian dioda jembatan adalah rangkaian penyearah gelombang penuh yang paling populer dan paling banyak digunakan dalam rangkaian elektronika. Rangkaian dioda jembatan menggunakan empat dioda sebagai penyearah-nya seperti diperlihatkan pada gambar berikut.
dioda-jembatan
Prinsip kerja dari rangkaian dioda jembatan ini adalah ketika arus setengah gelombang pertama terminal AC-Source bagian atas bernilai positif, sehingga arus akan mengalir ke beban (R-Load) akan melalui D2 (forward bias) dan dari R-Load akan dikembalikan ke AC-Source melalui D3. Hal ini diperlihatkan pada ilustrasi gambar di bawah ini, dimana jalur arus yang di searah-kan diberi warna merah.
dioda-jembatan-2
Sedangkan pada setengah gelombang kedua, terminal AC-Source bagian bawah yang kini bernilai positif sehingga arus yang mengalir ke beban (R-Load) akan melalui D4 (forward bias) dan dari R-Load akan dikembalikan ke AC-Source melalui D1. Hal ini diperlihatkan pada ilustrasi gambar di bawah ini, dimana jalur arus yang di searah-kan diberi warna merah.
dioda-jembatan-3
Sehingga setengah gelombang pertama dan kedua dapat di searah-kan dan inilah mengapa rangkaian dioda jembatan ini disebut sebagai rangkaian Penyearah Gelombang Penuh.
Sedangkan rangkaian penyearah gelombang penuh yang menggunakan ‘center tap design’ digunakan pada sumber arus bolak-balik (AC) yang memiliki ‘Center Tap (CT)’ contohnya pada transformator CT.
Pada rangkaian penyearah gelombang penuh ‘center tap design’ hanya menggunakan dua dioda sebagai penyearah-nya. Contoh penyearah ‘center tap design’ diperlihatkan pada gambar berikut ini.
center-tap-design
Prinsip kerja dari rangkaian penyearah “center tap design’ ini adalah pada saat arus setengah gelombang pertama pada AC-Source1 bernilai positif, maka arus akan mengalir ke beban (R-Load) melalui D1 (forward bias). Sedangkan pada arus setengah gelombang pertama pada AC-Source2 bernilai negatif akan ditahan (blocking) oleh D2 (reverse bias) sehingga tidak dapat mengalir ke beban, hal ini diilustrasikan pada gambar berikut.
center-tap-design-2
Pada arus setengah gelombang kedua pada AC-Source1 bernilai negatif sehingga arus ditahan (blocking) oleh D1 (reverse bias) dan tidak dapat mengalir ke beban, tetapi sebaliknya pada saat arus setengah gelombang kedua pada AC-Source2 bernilai positif, maka arus akan mengalir ke beban (R-Load) melalui D2 (forward bias). Sehingga menghasilkan penyearah gelombang penuh dari AC ke DC, seperti diilustrasikan pada gambar berikut.
center-tap-design-3
Arus DC rata-rata yang dihasilkan dari rangkaian penyearah gelombang penuh ini adalah dua kali dari arus rata-rata yang dihasilkan oleh penyearah setengah gelombang yakni;

IAV = 0,637 ∙ IMAX

Lalu bagaimana jika sumber arus bolak-balik (AC) dengan CT di searah-kan oleh rangkaian penyearah dioda jembatan? Hasilnya akan diperoleh dua arus searah (DC) dengan dua polaritas yang berbeda atau biasa disebut sebagai Penyearah Gelombang Penuh Polaritas Ganda.
ct-dioda-jembatan
Dari rangkaian di atas dapat dihasilkan arus searah (DC) dengan dua polaritas yang berbeda yakni (+)VDC dan (-)VDC. Biasanya penyearah jenis ini banyak digunakan pada rangkaian catu daya penguat suara (audio amplifier).

Memperhalus Keluaran Penyearah Gelombang Penuh

Kurva keluaran arus dan tegangan dari penyearah gelombang penuh terlihat tidak linear dan ini mengakibatkan timbul-nya noise. Noise yang dihasilkan pada penyearah gelombang penuh ini masih tinggi dan tidak layak untuk digunakan sebagai catu daya perangkat elektronika yang membutuhkan noise rendah. Oleh sebab itu untuk memperhalus keluaran dari penyearah gelombang agar menghasilkan keluaran yang linear dan noise yang rendah maka keluaran harus disaring (filtering) menggunakan kapasitor.
rangkaian-filtering-rectifier
Kapasitor yang digunakan untuk memperhalus keluaran penyearah gelombang penuh adalah kapasitor dengan kapasitas yang besar (Electrolytic Capacitor / Elco), antara beberapa ratus mikro farad sampai dengan beberapa farad.
Berikut ini merupakan bentuk keluaran dari rangkaian penyearah gelombang penuh yang di plot berdasarkan nilai C-Filter yang digunakan.
 Keterangan:
AC-Source = 12VAC-50Hz
D1 – D4 = 1N4007

Selasa, 13 Maret 2012

ARTIKEL TENTANG KAPASITOR

transistor merupakan peralatan yang mempunyai 3 lapis N-P-N atau P-N-P .dalam rentang operasi,arus kolektor Ic merupakan fungsi dari basis Ib.perubahan pada arus basis Ib memberikan perubahan yang diperkuat pada arus kolektor untuk tegangan emitor-kolektor Vce yang di berikan.perbandingan kedua arus ini dalam orde 15 sampai 100 ,simbol untuk transistor dapat dilihat pada gambar 21a dan gambar 21b.berikut ini sedangkan karakteristik transistor dapat di gambarkan seperti gambar 22.




salah satu cara pemberian tegangan kerja dari transistor dapat dilakukanseperti pada gambar 23 .jika di gunakan untuk jenis NPN,maka tegangan Vcc-nya positif,sedangkan untuk jenis PNP tegangan nya negatif.
 arus Ib (misalnya Ib1)yang di berikan dengan mengatur Vb akan memberikan titik kerja pada transistor pada saat itu transistor akan menghasilkan arus collector (Ic) sebesar Ic dan tegangan Vce sebesar Vce1. titik Q (titik kerja transistor) dapat di peroleh dari persamaan sebagai berikut :

persamaan garis beban = Y=Vce=Vcc-Ic x RL
jadi untuk      Ic= 0,maka Vce = Vcc dan
untuk Vce = 0,maka diperoleh Ic = Vcc/RL

apabila harga-harga untuk Ic dan Ice sudah di peroleh,maka dengan menggunakan karakteristik transistor yang bersangkutan,akan diperoleh titik kerja transistor atau titik Q .
pada umumnya transistor berfungsi sebagai suatu switching (kontak on-off).adapun kerja transistor yang berfungsi sebagai switching ini,selalu berada pada daerah jenuh (saturasi) dan daerah cut-off (bagian yang di arsir pada gambar 21).transistor dapat bekerja pada daerah jenuh dan daerah cut off-nya,dengan cara melakukan pengaturan tegangan Vb dan rangkaian pada basisnya (tahanan Rb) dan juga tahanan bebannya (RL).untuk mendapatkan on-off yang bergantian dengan periode tertentu,dapat dilakukan dengan memberikan teganganVb yang berupa pilsa,seperti pada gambar 24.

 
 

Minggu, 11 Maret 2012

Jenis Kapasitor

Tipe Kapasitor

Kapasitor terdiri dari beberapa tipe, tergantung dari bahan dielektriknya. Untuk lebih sederhana dapat dibagi menjadi 3 bagian, yaitu kapasitor electrostatic, electrolytic dan electrochemical. 
 

1. Kapasitor Electrostatic

Kapasitor electrostatic adalah kelompok kapasitor yang dibuat dengan  bahan dielektrik dari keramik, film dan mika. Keramik dan mika adalah bahan yang popular serta murah untuk membuat kapasitor yang kapasitansinya kecil. Tersedia  dari besaran pF sampai beberapa uF, yang biasanya untuk aplikasi rangkaian yang berkenaan dengan frekuensi tinggi. Termasuk kelompok  bahan dielektrik film adalah bahan-bahan material seperti  polyester (polyethylene terephthalate atau dikenal dengan sebutan mylar), polystyrene, polyprophylene, polycarbonate, metalized paper dan lainnya.
 
Mylar, MKM, MKT adalah beberapa contoh sebutan merek dagang untuk kapasitor dengan bahan-bahan dielektrik film. Umumnya kapasitor kelompok ini adalah non-polar.

2. Kapasitor Electrolytic

Kelompok kapasitor electrolytic terdiri dari kapasitor-kapasitor yang bahan dielektriknya adalah lapisan metal-oksida. Umumnya kapasitor yang termasuk kelompok ini adalah kapasitor polar dengan tanda + dan - di badannya. Mengapa kapasitor ini dapat memiliki polaritas, adalah karena proses pembuatannya menggunakan elektrolisa sehingga terbentuk kutup positif anoda dan kutup negatif katoda.
 
Telah lama diketahui beberapa metal seperti tantalum, aluminium, magnesium, titanium, niobium, zirconium dan seng (zinc) permukaannya dapat dioksidasi sehingga membentuk lapisan  metal-oksida (oxide film). Lapisan oksidasi ini terbentuk melalui  proses elektrolisa, seperti pada proses penyepuhan emas. Elektroda metal yang dicelup kedalam larutan electrolit (sodium borate) lalu diberi tegangan positif (anoda) dan larutan electrolit diberi tegangan negatif (katoda). Oksigen pada larutan electrolyte terlepas dan mengoksidai permukaan plat metal. Contohnya, jika digunakan Aluminium, maka akan terbentuk lapisan Aluminium-oksida (Al2O3) pada permukaannya.
 
Dengan demikian berturut-turut plat metal (anoda), lapisan-metal-oksida dan electrolyte(katoda) membentuk kapasitor. Dalam hal ini lapisan-metal-oksida sebagai dielektrik. Dari rumus (2) diketahui besar kapasitansi berbanding terbalik dengan tebal dielektrik. Lapisan metal-oksida ini sangat tipis, sehingga dengan demikian dapat dibuat kapasitor yang kapasitansinya cukup besar.
 
Bahan electrolyte pada kapasitor Tantalum ada yang cair tetapi ada juga yang padat. Disebut electrolyte padat, tetapi sebenarnya bukan larutan electrolit yang menjadi elektroda negatif-nya, melainkan bahan lain yaitu manganese-dioksida. Dengan demikian kapasitor jenis ini bisa memiliki kapasitansi yang besar namun menjadi lebih ramping dan mungil. Selain itu karena seluruhnya padat, maka waktu kerjanya (lifetime) menjadi lebih tahan lama. Kapasitor tipe ini juga memiliki arus bocor yang sangat kecil  Jadi dapat dipahami mengapa kapasitor Tantalum menjadi relatif mahal.

3. Kapasitor Electrochemical

Satu jenis kapasitor lain adalah kapasitor electrochemical. Termasuk kapasitor jenis ini adalah batere dan accu. Pada kenyataanya batere dan accu adalah kapasitor yang sangat baik, karena memiliki kapasitansi yang besar dan arus bocor (leakage current) yang sangat kecil. Tipe kapasitor jenis ini juga masih dalam pengembangan untuk mendapatkan kapasitansi yang besar namun kecil dan ringan, misalnya untuk applikasi mobil elektrik dan telepon selular

Selasa, 06 Maret 2012

Isolator keramik di rel kereta api
Isolator listrik adalah bahan yang tidak bisa atau sulit melakukan perpindahan muatan listrik. Dalam bahan isolator valensi elektronnya terikat kuat pada atom-atomnya. Bahan-bahan ini dipergunakan dalam alat-alat elektronika sebagai isolator, atau penghambat mengalirnya arus listrik. Isolator berguna pula sebagai penopang beban atau pemisah antara konduktor tanpa membuat adanya arus mengalir ke luar atau atara konduktor. Istilah ini juga dipergunakan untuk menamai alat yang digunakan untuk menyangga kabel transmisi listrik pada tiang listrik.
Beberapa bahan, seperti kaca, kertas, atau Teflon merupakan bahan isolator yang sangat bagus. Beberapa bahan sintetis masih "cukup bagus" dipergunakan sebagai isolator kabel. Contohnya plastik atau karet. Bahan-bahan ini dipilih sebagai isolator kabel karena lebih mudah dibentuk / diproses sementara masih bisa menyumbat aliran listrik pada voltase menengah (ratusan, mungkin ribuan volt).

Resistor adalah komponen elektronik dua kutub yang didesain untuk menahan arus listrik dengan memproduksi tegangan listrik di antara kedua kutubnya, nilai tegangan terhadap resistansi berbanding dengan arus yang mengalir, berdasarkan hukum Ohm:
\begin{align}V&=IR\\
I&=\frac{V}{R}\end{align}
Resistor digunakan sebagai bagian dari jejaring elektronik dan sirkuit elektronik, dan merupakan salah satu komponen yang paling sering digunakan. Resistor dapat dibuat dari bermacam-macam kompon dan film, bahkan kawat resistansi (kawat yang dibuat dari paduan resistivitas tinggi seperti nikel-kromium).
Karakteristik utama dari resistor adalah resistansinya dan daya listrik yang dapat dihantarkan. Karakteristik lain termasuk koefisien suhu, desah listrik, dan induktansi.
Resistor dapat diintegrasikan kedalam sirkuit hibrida dan papan sirkuit cetak, bahkan sirkuit terpadu. Ukuran dan letak kaki bergantung pada desain sirkuit, kebutuhan daya resistor harus cukup dan disesuaikan dengan kebutuhan arus rangkaian agar tidak terbakar.

Daftar isi

 [sembunyikan

] Satuan

Ohm (simbol: Ω adalah satuan SI untuk resistansi listrik, diambil dari nama Georg Ohm.
Satuan yang digunakan prefix :
  1. Ohm = Ω
  2. Kilo Ohm = KΩ
  3. Mega Ohm = MΩ

Konstruksi

Komposisi karbon

Resistor komposisi karbon terdiri dari sebuah unsur resistif berbentuk tabung dengan kawat atau tutup logam pada kedua ujungnya. Badan resistor dilindungi dengan cat atau plastik. Resistor komposisi karbon lawas mempunyai badan yang tidak terisolasi, kawat penghubung dililitkan disekitar ujung unsur resistif dan kemudian disolder. Resistor yang sudah jadi dicat dengan kode warna sesuai dengan nilai resistansinya.
Unsur resistif dibuat dari campuran serbuk karbon dan bahan isolator (biasanya keramik). Resin digunakan untuk melekatkan campuran. Resistansinya ditentukan oleh perbandingan dari serbuk karbon dengan bahan isolator. Resistor komposisi karbon sering digunakan sebelum tahun 1970-an, tetapi sekarang tidak terlalu populer karena resistor jenis lain mempunyai karakteristik yang lebih baik, seperti toleransi, kemandirian terhadap tegangan (resistor komposisi karbon berubah resistansinya jika dikenai tegangan lebih), dan kemandirian terhadap tekanan/regangan. Selain itu, jika resistor menjadi lembab, panas solder dapat mengakibatkan perubahan resistansi dan resistor jadi rusak.
Walaupun begitu, resistor ini sangat reliabel jika tidak pernah diberikan tegangan lebih ataupun panas lebih.
Resistor ini masih diproduksi, tetapi relatif cukup mahal. Resistansinya berkisar antara beberapa miliohm hingga 22 MOhm.

Film karbon

Selapis film karbon diendapkan pada selapis substrat isolator, dan potongan memilin dibuat untuk membentuk jalur resistif panjang dan sempit. Dengan mengubah lebar potongan jalur, ditambah dengan resistivitas karbon (antara 9 hingga 40 µΩ-cm) dapat memberikan resistansi yang lebar[1]. Resistor film karbon memberikan rating daya antara 1/6 W hingga 5 W pada 70 °C. Resistansi tersedia antara 1 ohm hingga 10 MOhm. Resistor film karbon dapat bekerja pada suhu di antara -55 °C hingga 155 °C. Ini mempunyai tegangan kerja maksimum 200 hingga 600 v[2].

Film logam

Unsur resistif utama dari resistor foil adalah sebuah foil logam paduan khusus setebal beberapa mikrometer.
Resistor foil merupakan resistor dengan presisi dan stabilitas terbaik. Salah satu parameter penting yang memengaruhi stabilitas adalah koefisien temperatur dari resistansi (TCR). TCR dari resistor foil sangat rendah. Resistor foil ultra presisi mempunyai TCR sebesar 0.14ppm/°C, toleransi ±0.005%, stabilitas jangka panjang 25ppm/tahun, 50ppm/3 tahun, stabilitas beban 0.03%/2000 jam, EMF kalor 0.1μvolt/°C, desah -42dB, koefisien tegangan 0.1ppm/V, induktansi 0.08μH, kapasitansi 0.5pF[3].

Penandaan resistor

Resistor aksial biasanya menggunakan pola pita warna untuk menunjukkan resistansi. Resistor pasang-permukaan ditandas secara numerik jika cukup besar untuk dapat ditandai, biasanya resistor ukuran kecil yang sekarang digunakan terlalu kecil untuk dapat ditandai. Kemasan biasanya cokelat muda, cokelat, biru, atau hijau, walaupun begitu warna lain juga mungkin, seperti merah tua atau abu-abu.
Resistor awal abad ke-20 biasanya tidak diisolasi, dan dicelupkan ke cat untuk menutupi seluruh badan untuk pengkodean warna. Warna kedua diberikan pada salah satu ujung, dan sebuah titik (atau pita) warna di tengah memberikan digit ketiga. Aturannya adalah "badan, ujung, titik" memberikan urutan dua digit resistansi dan pengali desimal. Toleransi dasarnya adalah ±20%. Resistor dengan toleransi yang lebih rapat menggunakan warna perak (±10%) atau emas (±5%) pada ujung lainnya.

Identifikasi empat pita

Identifikasi empat pita adalah skema kode warna yang paling sering digunakan. Ini terdiri dari empat pita warna yang dicetak mengelilingi badan resistor. Dua pita pertama merupakan informasi dua digit harga resistansi, pita ketiga merupakan faktor pengali (jumlah nol yang ditambahkan setelah dua digit resistansi) dan pita keempat merupakan toleransi harga resistansi. Kadang-kadang terdapat pita kelima yang menunjukkan koefisien suhu, tetapi ini harus dibedakan dengan sistem lima warna sejati yang menggunakan tiga digit resistansi.
Sebagai contoh, hijau-biru-kuning-merah adalah 56 x 104Ω = 560 kΩ ± 2%. Deskripsi yang lebih mudah adalah: pita pertama, hijau, mempunyai harga 5 dan pita kedua, biru, mempunyai harga 6, dan keduanya dihitung sebagai 56. Pita ketiga,kuning, mempunyai harga 104, yang menambahkan empat nol di belakang 56, sedangkan pita keempat, merah, merupakan kode untuk toleransi ± 2%, memberikan nilai 560.000Ω pada keakuratan ± 2%.
Warna Pita pertama Pita kedua Pita ketiga
(pengali)
Pita keempat
(toleransi)
Pita kelima
(koefisien suhu)
Hitam 0 0 × 100

Cokelat 1 1 ×101 ± 1% (F) 100 ppm
Merah 2 2 × 102 ± 2% (G) 50 ppm
Oranye 3 3 × 103
15 ppm
Kuning 4 4 × 104
25 ppm
Hijau 5 5 × 105 ± 0.5% (D)
Biru 6 6 × 106 ± 0.25% (C)
Ungu 7 7 × 107 ± 0.1% (B)
Abu-abu 8 8 × 108 ± 0.05% (A)
Putih 9 9 × 109

Emas

× 10-1 ± 5% (J)
Perak

× 10-2 ± 10% (K)
Kosong


± 20% (M)

Identifikasi lima pita

Identifikasi lima pita digunakan pada resistor presisi (toleransi 1%, 0.5%, 0.25%, 0.1%), untuk memberikan harga resistansi ketiga. Tiga pita pertama menunjukkan harga resistansi, pita keempat adalah pengali, dan yang kelima adalah toleransi. Resistor lima pita dengan pita keempat berwarna emas atau perak kadang-kadang diabaikan, biasanya pada resistor lawas atau penggunaan khusus. Pita keempat adalah toleransi dan yang kelima adalah koefisien suhu.

Resistor pasang-permukaan

Gambar ini menunjukan empat resistor pasang permukaan (komponen pada kiri atas adalah kondensator) termasuk dua resistor nol ohm. Resistor nol ohm sering digunakan daripada lompatan kawat sehingga dapat dipasang dengan mesin pemasang resistor.
Resistor pasang-permukaan dicetak dengan harga numerik dengan kode yang mirip dengan kondensator kecil. Resistor toleransi standar ditandai dengan kode tiga digit, dua pertama menunjukkan dua angka pertama resistansi dan angka ketiga menunjukkan pengali (jumlah nol). Contoh:
"334" = 33 × 10.000 ohm = 330 KOhm
"222" = 22 × 100 ohm = 2,2 KOhm
"473" = 47 × 1,000 ohm = 47 KOhm
"105" = 10 × 100,000 ohm = 1 MOhm
Resistansi kurang dari 100 ohm ditulis: 100, 220, 470. Contoh:
"100" = 10 × 1 ohm = 10 ohm
"220" = 22 × 1 ohm = 22 ohm
Kadang-kadang harga-harga tersebut ditulis "10" atau "22" untuk mencegah kebingungan.
Resistansi kurang dari 10 ohm menggunakan 'R' untuk menunjukkan letak titik desimal. Contoh:
"4R7" = 4.7 ohm
"0R22" = 0.22 ohm
"0R01" = 0.01 ohm
Resistor presisi ditandai dengan kode empat digit. Dimana tiga digit pertama menunjukkan harga resistansi dan digit keempat adalah pengali. Contoh:
"1001" = 100 × 10 ohm = 1 kohm
"4992" = 499 × 100 ohm = 49,9 kohm
"1000" = 100 × 1 ohm = 100 ohm
"000" dan "0000" kadang-kadang muncul bebagai harga untuk resistor nol ohm
Resistor pasang-permukaan saat ini biasanya terlalu kecil untuk ditandai.

Penandaan tipe industri

Format: XX YYYZ[4]
  • X: kode tipe
  • Y: nilai resistansi
  • Z: toleransi
Rating Daya pada 70 °C
Kode Tipe Rating Daya (Watt) Teknik MIL-R-11 Teknik MIL-R-39008
BB RC05 RCR05
CB ¼ RC07 RCR07
EB ½ RC20 RCR20
GB 1 RC32 RCR32
HB 2 RC42 RCR42
GM 3 - -
HM 4 - -
Kode Toleransi
Toleransi Teknik Industri Teknik MIL
±5% 5 J
±20% 2 M
±10% 1 K
±2% - G
±1% - F
±0.5% - D
±0.25% - C
±0.1% - B
Rentang suhu operasional membedakan komponen kelas komersil, kelas industri dan kelas militer.
  • Kelas komersil: 0 °C hingga 70 °C
  • Kelas industri: −40 °C hingga 85 °C (seringkali −25 °C hingga 85 °C)
  • Kelas militer: −55 °C hingga 125 °C (seringkali -65 °C hingga 275 °C)
  • Kelas standar: -5 °C hingga 60 °C